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This paper presents a numerical method for predicting the acoustic scattering from
two-dimensional (2-D) thin bodies. Both the Dirichlet and Neumann problems are
considered. Applying the thin-body formulation leads to the boundary integral equations
involving weakly singular and hypersingular kernels. Completely regularizing these kinds of
singular kernels is thus the main concern of this paper. The basic subtraction}addition
technique is adopted. The purpose of incorporating a parametric representation of the
boundary surface with the integral equations is two-fold. The "rst is to facilitate
the numerical implementation for arbitrarily shaped bodies. The second one is to facilitate
the expansion of the unknown function into a series of Chebyshev polynomials. Some of the
resultant integrals are evaluated by using the Gauss}Chebyshev integration rules after
moving the series coe$cients to the outside of the integral sign; others are evaluated exactly,
including the modi"ed hypersingular integral. The numerical implementation basically
includes only two parts, one for evaluating the ordinary integrals and the other for solving
a system of algebraic equations. Thus, the current method is highly e$cient and accurate
because these two solution procedures are easy and straightforward. Numerical calculations
consist of the acoustic scattering by #at and curved plates. Comparisons with analytical
solutions for #at plates are made.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The importance of thin-body scattering problems is well recognized in various physical
"elds, including acoustics, electromagnetism, and the surface-wave-body interactions [1].
The boundary integral equation method, with appropriate modi"cations, has been
a conventional means of treating this class of problems. Two commonly used approaches
are the multi-domain and the thin-body integral formulations. The "rst [2] introduces an
imaginary interface surface that divides the acoustic domain into an interior subdomain
and an exterior subdomain. Integral equations for the interior and the exterior subdomains
are coupled using continuity conditions at the interface surface. This approach is not
e$cient in computation if the imaginary interface surface is relatively large. The second
approach, proposed by Wu and Wan [3], is conceptually similar to the previous one
because an imaginary interface surface is also constructed. This approach considers the
integral equation and its normal derivative of each subdomain. By combining the interior
and exterior integral equations, Wu and Wan [3] could cancel out the integrals over the
imaginary interface surface in terms of the corresponding continuity conditions. The
advantage over the multi-domain formulation is that only the integrals over the body
0022-460X/02/100773#21 $35.00/0 � 2002 Elsevier Science Ltd.
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surface are required. However, this approach introduces another more di$cult problem, i.e.,
the hypersingularity.

Developing a means of e$ciently evaluating hypersingular integral equations has become
an active research topic in the acoustic radiation and scattering problems since Burton and
Miller [4] derived a method of overcoming the non-uniqueness di$culty. This method
linearly combines the Helmholtz integral equation with its normal derivative. Schenck [5]
proposed the so-called combined Helmholtz integral equation formulation (CHIEF)
method that also overcomes the non-uniqueness di$culty. Although Burton and Miller's
method possesses a more rigorous mathematical background than the CHIEF method, the
hypersingularity di$culty is known to largely hinder the numerical implementation of the
composite equation. This fact accounts for why the CHIEF method has been extensively
used in engineering applications nowadays. Non-uniqueness occurs at the characteristic
frequencies (more precisely, in a frequency band with a certain characteristic frequency as
the center) of bodies with "nite volume. When the body volume degenerates,
non-uniqueness disappears. Under such circumstances, the standard integral formulation
fails ascribed to the fact that the opposite surfaces collapse into one; then we can apply the
two solution methods mentioned previously. The thin-body formulation can be an e!ective
method if the associated hypersingular integral is easy to evaluate. Wu and Wan [3]
adopted Maue's [6] regularized normal derivative integral equation that, however, is not
convenient in computation. Other formulations [7}9], derived mainly for the "nite body
volume, may not be applicable to the thin-body problems. For instance, Yang [9] obtained
a set of completely desingularized integral equations using the Gauss #ux theorem and
other properties of potential theory. Extension of Yang's regularization technology to the
thin-body problems fails because some properties of potential theory used are not
applicable to thin bodies.

Other related problems include treating mixed boundary conditions; for example, Ih and
Lee [10] developed a direct boundary element method so as to evaluate the pressure or the
velocity potential on both sides of thin body (with di!erent surface conditions of each side),
instead of the jump values across it. Also of interest is the mixed-body condition, i.e., thin
bodies (such as "ns and wings) mixed with regular bodies (such as the airplane fuselage).
Note that the non-uniqueness di$culty mentioned previously still exists in the mixed-body
boundary integral formulation so that the use of, for example, the CHIEF method or the
Burton}Miller method is required [11].

The purpose of this paper is to develop an e$cient solution method of treating 2-D
thin-body scattering problems. The thin-body formulation is adopted and brie#y described
in section 2. Burton and Miller's method is known to lose the advantage over Schenck's
method due to the hypersingularity, as mentioned above. We present a means of e$ciently
evaluating the related hypersingular integral so as to avoid the occurrence of Burton and
Miller's di$culty. Sections 3 and 4 describe the desingularization techniques for thin soft
and thin rigid bodies. We approximate the unknown function by means of truncated series
of Chebyshev polynomials. The Chebyshev polynomials have acquired great practical
importance in polynomial approximation method. Speci"cally, it has been shown that
a series of Chebyshev polynomials converges more rapidly than other series of Gegenbauer
polynomials, and it converges much more rapidly than a power series. For theory and
applications involving the Chebyshev polynomials, see reference [12]. From the properties
of expansion of functions in Chebyshev polynomials, several researchers [13}15] have
extended the expansion method for solving integral equations. The modi"ed hypersingular
integral, interpreted in the Hadamard [16] "nite-part sense, involved in section 4 is easy to
evaluate owing to the fact that an exact value exists [17]. Section 5 examines the proposed
method's e!ectiveness by solving the acoustic scattering from #at and curved plates.
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Comparisons with analytical solutions for #at plates are made. Section 6 concludes this
paper.

2. THIN-BODY INTEGRAL FORMULATION

The propagation of acoustic waves through an unbounded homogeneous medium is
described by the wave equation

� �� (r, t)"
1

c�

���(r, t)

�t�
, (1)

where � � is the Laplacian operator in two dimensions, � is the velocity potential at a point
r at time t, and c is the speed of sound in the medium at the equilibrium state. The velocity
potential can be written by summing the two parts as follows:

�"����#��, (2)

where ���� is the incident velocity potential and �� is the scattered velocity potential. For
a steady state excitation with a time factor exp(!i�t), equation (1) reduces to the
Helmholtz di!erential equation in the following form:

(� �#k�)�"0, (3)

where i is the imaginary unit, � is the angular frequency, and k"�/c is the wave number.
The excess acoustic pressure can be written as
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�, (4)

where �
�
denotes the density of the #uid at the equilibrium state. The scattered velocity

potential should also satisfy the Sommerfeld radiation condition that can be written in 2-D
form as
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!ik�� �"0. (5)

Consider a thin body �B exposed to a plane wave in an in"nite acoustic medium
(Figure 1). The thin-body formulation approach [3] is described below. Assume a smooth,
twice-di!erentiable boundary surface �B#�b; the equivalent integral equation of
equation (3) takes the form
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where�
�
is the velocity potential in the exterior domain, n

�
is the distance in the direction of

the outward normal at the source point Q3�B#�b, �B is the body surface and �b is the
imaginary surface. The free-space Green function in 2-D form can be expressed as
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Figure 1. Scattering from a thin body �B.
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whereH���
�

(kR) denotes the Hankel function of the "rst kind,R denotes the distance between
the "eld point P(x, y) and the source pointQ (�, �), and (x, y) and (�, �) are the corresponding
Cartesian co-ordinates. The integral equation for the interior domain is
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where �
�
is the velocity potential in the interior domain. Adding equation (6) and equation

(8) together yields
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On the imaginary surface �b, continuity of the normal component of particle velocity requires
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and continuity of pressure requires
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Applying continuity conditions (10) and (11) in equation (9) leads to
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where the singular integrals are applied on the body surface �B only.
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Equation (12) itself is not su$cient for solving the problem ascribed to the additional
unknown functions in the interior domain. One more equation is then required to
supplement equation (12) for the solution. The normal derivative of equation (9) can be
written as
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Applying continuity conditions (10) and (11) in equation (13) leads to
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which contains a hypersingular kernel as QPP. The derivative �/�n

cannot be taken

inside the integral since a hypersingular kernel is non-integrable. Equation (14) is actually
an integrodi!erential equation. Combining equations (12) and (14), however, yields the
solution to the problem.

In order to facilitate the numerical implementation, we next express equation (12) and
equation (14) in parametric form. Referring to a Cartesian co-ordinate system, the
boundary surface �B can be represented by a vector function

r (t)"x (t)i#y(t) j , (15)

where t is an appropriate parameter and a)t)b. The arc length S of �B is given by the
integral
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and can also serve as a parameter in parametric representation as follows:
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The ordinary line integral of function f (x, y) along �B can then be written by virtue of the
parameter t in the following:
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Note that, in many circumstances, y (t) is not known analytically, but is given by a set of
discrete data instead. For the latter case, y (t) can be simulated by using appropriate
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approximation methods, for example, a simple cubic spline; section 5 will describe such
a numerical application in detail. By following the above discussion and setting a"!1 and
b"1 in equation (18), we can recast equations (12) and (14) into
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where 	 and � are the new parameters corresponding to Q(�, �) and P (x, y), respectively,
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Note that the integration limits, !1 and 1, in equations (20) and (21) are purposely selected
to facilitate the application of the Chebyshev polynomials to be discussed below.

3. DESINGULARIZATION FORMULATION FOR THE SOFT BODY SCATTERING

For the soft body scattering, i.e., �"0 on �B, equation (20) reduces to
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The relationship
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The normal and also the normal derivative at a point on the body's edges cannot be de"ned;
the function g
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(	) is notably proportional to (1G	)���� as 	 P$1 [18]. Note also that the

weighting function of the Chebyshev polynomials of the "rst kind ¹
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where N is "nite and the series coe$cients a
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where Yang [9] obtained
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The "rst and second integrals, with the preceding two identities, of equation (33) are thus
regular and can be conveniently evaluated using the Gauss}Chebyshev integration rule of
the "rst kind [19]

�
�

��

1

(1!	�)���
h(	) d	"



J

�
�
�	�

h (	
�
), (36)



780 S. A. YANG
where h(	) is a function and 	
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/2J), j"1,2,J. The exact value of the third

integral of equation (33) is

�
�

��

1

(1!	�)���
¹
�
(	) d	"�


 for n"0,

0 for n*1,
(37)

which actually is a use of the orthogonal relation of Chebyshev polynomials ¹
�
and ¹

�

�
�

��

1

(1!	�)���
¹
�
(	)¹

�
(	) d	"�

(1#
�
)
/2 for m"n,

0 for mOn,
(38)

where


�
"�

1 for m"n"0,

0 for m"nO0.

The fourth integral of equation (33) can also be evaluated exactly in the following:

�
�

��

ln �	!��
(1!	�)���

¹
�
(	) d	"�

!
 ln 2 for n"0,

!
¹
�
(�)
n

for n*1.
(39)

The case of n"0 in the preceding equation is well known (see, e.g., integral (699) of
reference [20]); the case of n*1 is obtained by using formula (22.13.3) of reference [19],
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In computations, we locate the collocation points at the positions of the integration
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; the series coe$cients a
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where the "rst integral is bounded and the integrand can be set equal to zero when QPP,
and Smirnov [21] obtained
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equation (43) in terms of, again, the Gauss}Chebyshev integration rule of the "rst kind.
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4. DESINGULARIZATION FORMULATION FOR THE HARD BODY SCATTERING

For the hard body scattering, i.e., ��/�n"0 on �B, equation (21) reduces to
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where � is the angle between n(	) and n (�). Substituting equation (50) into equation (49)
gives
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implementation ensures that the edge conditions are satis"ed for the surface function f
�
(	).

Substituting equation (53) into equation (52) gives

�
�
�	�

b
� �

�

��
�
�� (G

�
!G

�
)

�n��n�
!

k�G
�

2 � (1!	�)���;
�
(	) d	

!

k�

4

�
�
�	�

b
� �

�

��
�lnR!ln�

dS

d�
�	!����(1!	�)���;

�
(	) d	

!

k�

4

�
�
�	�

b
�
ln

dS

d� �
�

��

(1!	�)���;
�
(	) d	

!

k�

4

�
�
�	�

b
� �

�

��

ln �	!��(1!	�)���;
�
(	) d	
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!

1

2

�
�
�	�

b
� �

�

��
�
�� lnR

�n��n�
#

1

(dS/d�)� (	!�)�� (1!	�)���;
�
(	) d	

#

1

2

�
�
�	�

b
�

(dS/d�)� ��
�

��

(1!	�)���

(	!�)�
;

�
(	) d	"!

�����

�n�
. (54)

Yang [9] obtained that, in the "rst integral,

lim
��� �

�� (G
�
!G

�
)

�n��n�
!

k�G
�

2 �"
k�

4
 �
1

2
!ln

k

2
!��#i

k�

8
, (55)

where � is Euler's constant, as de"ned in section 3. Observe also that, in the second integral,
we have

lim
��� �lnR!ln�

dS

d�
�	!����"0. (35)

The exact value of the third integral of equation (54) is

�
�

��

(1!	�)���;
�
(	) d	"�


/2 for n"0

0 for n*1
(56)

which is a direct use of the orthogonal relation of Chebyshev polynomials ;
�
and ;

�

�
�

��

(1!	�)���;
�
(	);

�
(	) d	"�


/2 for m"n,

0 for mOn.
(57)

The fourth integral of equation (54) can be evaluated exactly in the following:

�
�

��

ln �	!��(1!	�)���;
�
(	) d	"�


��

2
!



4
(1#2 ln 2) for n"0,



2 �

¹
�	�

(�)
n#2

!

¹
�
(�)
n � for n*1.

(58)

The case of n"0 in the preceding equation is obtained by combining formula (22.13.4) of
reference [19],

�#
�

��

(1!	�)���;
�
(	)

	!�
d	"!
¹

�	�
(�), (59)

with the known identity

�
�

��

(1!	�)��� ln 	 d	"!
(1#2 ln 2)/4; (60)

the case of n*1 is obtained by using equations (41), (59), and formula (22.5.8) of reference
[19],

¹
�
(�)"(;

�
(�)!;

���
(�))/2. (61)
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The "nite-part integral in equation (54) can be de"ned in terms of a Cauchy
principal-value integral by

��
�

��

h(	)
(	!�)�

d	"

d

d� �#
�

��

h(	)
	!�

d	, (62)

where h (	) is a HoK lder-continuous function and has a HoK lder-continuous derivative; see
references [17, 22] for de"nitions and further information. By combining equation (62) with
equation (59), Kaya and Erdogan [17] obtained

��
�

��

(1!	�)���;
�
(	)

(	!�)�
d	"!
 (n#1);

�
(�). (63)

The current expansion method, using the Chebyshev polynomial of the second kind, is seen
to greatly facilitate the evaluation of the type of hypersingular integral obtained herein. The
"rst, second and "fth integrals in equation (54) are non-singular, as demonstrated above,
and can be conveniently computed by using the following Gauss}Chebyshev integration
rule of the second kind [19]

�
�

��

(1!	�)���h(	) d	"



J#1

�
�
�	�

h (	
�
) sin�

j

J#1

, (64)

where 	
�
"cos( j
/(J#1)), j"1,2, J.

In computations, we locate again the collocation points at the positions of the integration
points x

�
; the series coe$cients b

�
,2, and b

�
can thus be determined by solving a system of

algebraic equations from equation (54). The desired function f
�

is then obtained from
equation (53).

For the hard body scattering, equation (20) reduces to

f
�
(�)
2

"�
�

��

�G
�

�n�
f
�
(	)

dS

d	
d	#����(�). (65)

We desingularize the preceding equation to the following form:

f
�
(�)
2

"�
�

��
�
�G

�
�n�

f
�
(	)!

�G
�

�n�
f
�
(�)�

dS

d	
d	!

f
�
(�)
2
 �

�

��

� lnR

�n�

dS

d	
d	#����(�), (66)

where the "rst integral is bounded and the integrand can be set equal to zero when QPP,
and lim

���
(� lnR/�n�) is also bounded, as given in equation (44). The function f

�
, with

f
�
given previously, is obtained by evaluating the non-singular integrals in equation (66) in

terms of, again, the Gauss}Chebyshev integration rule of the second kind. Combining
f
�
with f

�
yields the solutions �

�
and �

�
.

5. NUMERICAL EXAMPLES

This section examines the availability of the soft- and hard-body formulations presented
in sections 3 and 4. First, consider an acoustically soft #at plate of width 2d exposed to
a plane wave at broadside incidence. In this case, the boundary surface is represented by
x"d	 and y"�"0 with !1)	)1 and the transformation function is simply



Figure 2. Amplitude of surface "eld for a soft #at plate exposed to a plane wave with (a) kd"1 and (b) kd"5:
� � �, exact solution; ) ) ) ) ) , N"10; } } } , N"5.
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dS/d	"d; the parametric forms (33) and (43) can therefore be easily implemented by the
transformation x"d	 and y"�"0. Figure 2 plots the computed amplitudes of the
non-dimensional surface function k����/�n for the cases of kd"1 and 5, andN"5 and 10;
this implies that 6 and 11 expansion terms are considered, respectively, for the
approximation. The subscript i designates the lower face and e designates the upper face, i.e.,
the left part of Figure 2 plots the surface function of the lower face and the right part plots
that of the upper face. The corresponding exact solution of the surface function is also
plotted and can be written as [23]

1

k

��

�n
"

1

� �
8


1!���
��� �

�
�	�

(!1)� �
Se

��
(�, 0)Se

��
(�, �)

N���
��
Re�
�

��
(�, 1)

!i
So

��	�
(�, 0)Se

��	�
(�, �)

N���
��	�

Ro�
�
��	�

(�, 1) �, (67)

where �"kd, �"cos �, 0)�(2
, Se and So are the Mathieu even and odd angular
functions, respectively,Re�
� and Ro�
� are the Mathieu even and odd radial functions of the
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third kind, respectively, andN���
�

andN���
�

are de"ned by the following orthogonal relations:

�
��

�

Se
�
(�, cos �)Se

�
(�, cos �) d�"�

0 for iOj,

N���
�

for i"j,
(68)

�
��

�

So
�
(�, cos �)So

�
(�, cos �) d�"�

0 for iOj,

N���
�

for i"j,
(69)

and

�
��

�

Se
�
(�, cos �)So

�
(�, cos �) d�"0, (70)

the last for i"j as well as iOj; see reference [24] for de"nitions and further information on
Mathieu functions. Figure 2 indicates that the numerical result of N"5 agrees well with
the exact solution for the case of kd"1. The numerical results of N"10 for the cases of
kd"1 and 5 are extremely close to the exact solutions, as Figure 2 shows. Figure 3 displays
the corresponding relative errors �, de"ned by �(computed result!exact solution)/exact
solution �, of Figure 2 so as to clearly examine the accuracy of the current method. The
result ofN"20 is also plotted for demonstrating the improvement of accuracy with respect
to an increase in the expansion number N. Figure 3 indicates that the relative error of
N"20 is (10��, even very close to the plate's edges where the surface function notably
approaches in"nity. The relation between the truncation order and the relative error
demonstrated in Figure 3 shows that doubling the expansion numberN generally improves
an order of 10�� in the relative accuracy for both testing wave numbers kd"1 and 5. The
computational time took about four times more; this indicates that construction of the
matrix elements occupies the major portion of the computational time for the current
small-scale problem. Figures 2 and 3 thus con"rm the e!ectiveness of the transformed
formulation presented in section 3.

Consider next an acoustically hard #at plate, again, exposed to a plane wave at broadside
incidence. The modi"ed formulations (54) and (66) are to be examined. Figure 4 plots the
computed amplitudes of the surface function � for the cases of kd"1 and 5, and N"5, 10
and 20. Other de"nitions of this "gure are similar to that of Figure 2. Note that Figure 4(b)
does not include the case of N"5 for kd"5 because the numerical result does not
converge. The corresponding exact solution of the surface function can be written as [23]

�"(8
)���
�
�
�	�

(!1)��i
Se

��
(�, 0)Se

��
(�, �)

N���
��
(�/�u)Re�
�

��
(�, coshu) �

�	�

#

So
��	�

(�, 0)So
��	�

(�, �)
N���

��	�
(�/�u)Ro�
�

��	�
(�, cosh u) �

�	�
� ,

(71)

where 0)u(R. Figure 4(a) indicates that the numerical result of N"10 correlates well
with the exact solution for kd"1; the discrepancy of N"5 mainly occurs at the edges.
Figure 4(b) exhibits that the numerical result of N"20 "ts the exact solution well for
kd"5; the great discrepancy of N"10 implies the insu$cient expansion terms for the
solution. Figure 5 explains the corresponding relative errors of Figure 4. The relative error
of N"20 is less than about 10�
 for kd"1 and 10�� for kd"5, as Figure 5 shows. For
kd"1, doubling the expansion number fromN"5 to 10 improves about an order of 10��

in the relative accuracy. For kd"5, doubling N"10 to 20 improves the relative accuracy
greater than one order of 10��. Construction of the matrix elements also occupies the major



Figure 3. Relative error � of computed amplitude of surface "eld in Figure 2 for (a) kd"1 and (b) kd"5:
} ) } )} ) , N"20; ) ) ) ) ) , N"10; } }} , N"5.
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portion of the computational time in this case. Figures 4 and 5 thus con"rm the
e!ectiveness of the transformed formulation presented in section 4.

In light of the above development, let us consider herein the case of the upper arch of an
ellipse with major axis 2d, minor axis 2e, and f �"d�!e�, exposed to a plane wave
incident in the direction of the negative y-axis (see Figure 6). The boundary surface can be
represented by x�/d�#y�/e�"1. In this case, some related functions, e.g., the
transformation function dS/d	, can be evaluated analytically. However, we did not use this
relation directly in the modi"ed formulations (33) and (43) for soft bodies, and (54) and (66)
for hard bodies, i.e., we treated this case as an arbitrarily shaped body with a set of given
discrete surface points only. For convenience, "rst convert the boundary surface to
x�#d�y�/e�"1 so that !1)x)1. Forty intervals of a cubic spline were used for



Figure 4. Amplitude of surface "eld for a hard #at plate exposed to a plane wave with (a) kd"1 and (b) kd"5:
� � �, exact solution; } ) } ) } ) , N"20; ) ) ) ) ) , N"10; } } }, N"5.
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simulating the boundary surface. In doing so, the absolute errors of y(t) and dy/dt have the
values of about 10�� and 10�� respectively. All data of boundary points needed in the
parametric formulations can then be easily obtained from the cubic spline. All calculations
presented below applied the series expansion ofN"20. Figure 6 illustrates the variation in
the surface function �k����/�n � of the soft curved plate with respect to the radio e/d. One
may immediately observe that the computed surface function �k����

�
/�n� of e/d"0)5 in

Figure 6(b) approaches a value of one as x/dP1. This surface function actually reaches its
minimum value 1)053 at x/d"0)998 and then tends to in"nity rapidly as x/dP1, as it
should be. Figure 6 indicates that the amplitude of the surface function on the shadow side
approaches zero as the value of e/d increases, except in the region of x/dP!1. The
amplitude of the surface function on the illuminated side converges to a "xed value of two in



Figure 5. Relative error � of computed amplitude of surface "eld in Figure 4 for (a) kd"1 and (b) kd"5:
} ) } )} ) , N"20; ) ) ) ) ) , N"10; } }} , N"5.
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the region of x/dP0 for kf"5, as Figure 6(b) shows. Figure 7 illustrates the variation in
the surface function �� � of the hard curved plate with respect to the ratio e/d. The value of
��

�
� increases with an increase in the value of e/d on the shadow side for kf"1, as

Figure 7(a) shows; in contrast, an increase in e/d generally leads to a decrease in ��
�
� for

kf"5, as Figure 7(b) shows. Figures 6 and 7 have clearly demonstrated the e!ect of the
ratio e/d on the scattering "eld.

6. CONCLUDING REMARKS

This paper has derived the desingularized integral formulations for investigating the
acoustic scattering from 2-D thin bodies. Expansion of the unknown function into a series



Figure 6. Amplitude of surface "eld for a soft curved plate exposed to a plane wave with (a) k f"1 and
(b) k f"5, where f �"d�!e�: 00 , e/d"0; ) ) ) ) ) , e/d"0)1; } }} , e/d"0)2; } ) } )} ) , e/d"0)5.
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of Chebyshev polynomials results in the direct evaluation of a number of integrals; some of
them can be evaluated conveniently by applying the Gauss}Chebyshev integration rules,
and others can be evaluated exactly, including the hypersingular integral. A considerable
advantage of the Chebyshev expansion is that, after calculation of the series coe$cients, the
value of the surface function can be determined throughout the boundary surface at low
computation e!ort, instead of at a discrete number of points occurring in the conventional
boundary element methods. The proposed numerical method is applicable for arbitrarily
shaped bodies because a parametric form of the boundary curve, with a cubic spline "tting,
is included in the transformed formulations. The numerical implementation is highly
e$cient ascribed to the fact that only two basic procedures are required, i.e., one for
evaluating the ordinary integrals that is straightforward, and the other for solving system of
algebraic equations. Comparision of the numerical calculations with the exact solutions
con"rms the e!ectiveness of the proposed method.



Figure 7. Amplitude of surface "eld for a hard curved plate exposed to a plane wave with (a) k f"1 and
(b) k f"5: **, e/d"0; ) ) ) ) ) , e/d"0)1; } } }, e/d"0)2; } ) } )} ) , e/d"0)5.
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Also of great interest is the di!erence between the current approach and the conventional
BEM; the comparison is summarized below.

(1) The proposed formulations are expressed in completely singularity-free form; i.e., one
can immediately implement the formulations without other special treatments. The BEM
approach usually involves weakly singular kernels in the integral equations before
calculations and therefore necessitates further considerations for dealing with this
singularity.

(2) Removing the singular behavior of the kernel at a certain point inside the integration
domain by the proposed approach globally smoothes out the integration function. In
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contrast, the singular kernel is only smoothed out on each element in the BEM; i.e., this
approach may still possess a signi"cantly varying integrand value over the elements that
surround the singular element. This observation implies that the current approach is an
accurate method for a "ne discretization system.

(3) No boundary elements are required. Standard quadrature rules can be immediately
applied over the entire integration domain; i.e., the collocation points can be exactly the
positions at which the integration points are located. Restated, giving only nodal data (from
the cubic spline "tting) is su$cient for the computation. In contrast, the BEM approach
divides the boundary surface into small elements (planar or curved), and the unknown
function is de"ned as a piecewise polynomial function. Subsequently, the application of
a quadrature rule one each element yields a system of algebraic equations. Thus the number
of integration points may be much more than that of elements. The above observation
implies that the current element-free approach is a very e$cient method.

(4) The accuracy of the surface function can be easily examined by the calculated value of
the last series coe$cient a

�
in equation (32) (or b

�
in equation (53)); i.e., if a

�
is smaller than

a prescribed value, say, 10�, in the "rst calculation, the error bound of the surface function
can be approximated without a further trial. In contrast, the BEM approach generally
repeats the entire numerical process at least once with di!erent discretization systems and
then compares the results for ensuring the convergence of the solution.

(5) The sought surface function can be evaluated, with the same order of accuracy, at any
point on the boundary surface once the series coe$cients have been determined. In other
words, the accuracy is uniformly controlled. In the BEM approach, an approximation is
required for evaluating surface function at a point that is not a collocation point. This also
implies that the interpolation procedure may reduce the related accuracy.

Extension of the current method to 3-D thin-body scattering problems is conceptually
straightforward, but it may not be an easy task. The key point lies in how to change an
arbitrarily shaped thin-body into a parametric form and, meanwhile, to preserve the
structure of the hypersingularity after the transformation. This extension thus necessitates
an appropriate conformal mapping. For scatterers with "nite volume, the Chebyshev
polynomials could be replaced with other orthogonal polynomials, presuming that the
corresponding analytical integration can be easily accomplished.
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